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Cyclic convection in a zone bounded by stable layers
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We have simulated compressible convection in two distinct but related d@sassingle layer of unstable
material is in contact with impenetrable boundaries @nda layer of unstable material that is identical to that
of case(i) except that it is now “sandwiched” between two thick stable layers. The convection is driven
equally strongly in both cases. We find that convection in the single layer is steady, whereas in the “sand-
wich” case, the convection exhibits nonsteady behavior of a particular kind: the convection is cyclic. During
one part of the cycle, the convective flé falls to levels that are too small for energy balance. During the
second part of the cycle, conduction increases in an attempt to restore energy, but this eventually drives the
fluid back to convective instability, with a subsequent increasedn In the course of the cycle, the fluctua-
tions inF are large(factors of 2—3. We comment on the applicability of our results to convection in the sun.
[S1063-651%97)05003-4

PACS numbes): 47.27—i

[. INTRODUCTION case,k=const (equivalent toK =cons} leads to the result
that the temperature gradief@tT/dz= 3, in thermal equi-
The properties of convective flows in a convectively un-librium is depth independen{The subscript 0 denotes pa-
stable fluid are determined by a number of factors, includingameters in the equilibrium statdn terms of the parameter
the mechanical and thermal characteristics of the fluid, th&®a=ga B,*«v (whereg is the acceleration due to gravity
boundary conditions, and how strongly the convection is beRayleigh[1] showed that convection occurs only if the driv-
ing driven. Studies of convection in laboratory conditionsing s sufficiently strong, i.e., only if Ra exceeds
typically involve (a) nearly incompressible fluidp) impen- Ra,;=277"/4~660. In the next five paragraphs we summa-
etrable boundaries with prescribed temperatures,(@n@v-  yjze some of the salient changes that emerge when we relax

els of driving th_at range f_rom_ only _slightly supercr_itical 10 cach of the five assumptions of RB convectidi—(v)
strong. We are interested in simulations of convection in th ove

sun. The differences between conditions in the solar convec- Relaxing the assumption of incompressibility, Spieig!

tion zone and in the laboratory are considerable: in the sun .. S
we must allow for(a) highly compressible fluid(b) com- estimated Rg for a perfect gagwhere pressurg is given

pletely penetrable “boundaries” with ill-defined positions by p=RpT andR is the gas constaptin this case, in the

and temperatures, and) strong driving. Because of these limit of constant conduc_tivity, the equilibrium_stat_e still has_
differences, it is possible that certain features of astrophysifo~Const, but the density and pressure profiles in the equi-
cal convection have no analog in the laboratory case. In thidPrium state are no longer linear functions ofinstead the
paper we explore one such feature, namely, heat transpo?P”d'“O” of hydrostatic eqwhbnurrllrequwes that the depth
that cycles back and forth between convection and conducdependences bgo~z™ and po~2z""", where the “poly-
tion. tropic index” m is not arbitrary but depends on the tempera-
In order to relate our work to other simulations of con- ture gradientg, according tom=g/RB,— 1. [We shall use
vection(both laboratory and astrophysigalve first highlight  this relation in dimensionless form belaBec. Il B).] When
some of the stages that convection theory has gone througthe material is compressible, it is no longer the absolute
value of the temperature gradid| that is relevant in es-
o ) ) timating the strength of convective driving: instead, the rel-
A. Assumptions in convection modeling evant quantity in the expression for Ra is now the superadia-
In the earliest analysis of convective instability by Ray- baticity, i.e., the excess df3,| over the adiabatic gradient
leigh [1], the aim was to explain Benard[g] experimental |B,d=9/C, [4]. Now, for a perfect nonionizing gas,
results for the onset of convection in a liquid. There are fiveC,=2.5R: in the dimensionless units that we use below in
assumptions that typically enter into analysis of Rayleigh-our equationsR=1, and this leads todT/d2),4~0/2.5.
Benard (RB) convection:(i) the Boussinesq approximation With the above definition ofn, this means that a configura-
(i.e., the fluid is treated as incompressible except for slightion with m> (<) 1.5 is stable(unstable to convection in
density fluctuations associated with thermal expansion, witlthe dissipationless limit. When one evaluates,Ra the
constant coefficien); (ii) the linear regimeiii) prescribed compressible case, one finds that in the limit where the tem-
boundary temperature€y) the depth-independent kinematic peratures at the bottom and top are almost eqy#l,—1
viscosity v and thermal diffusivityx=K/pC, (whereK is  (i.e., nearly incompressible Ra,;; approaches the incom-
thermal conductivityp is density, andC, is specific heat  pressible valug¢~600); but for largeT,/T;, Ra,; in a per-
and(v) impenetrable boundaries at well-defined spatial locafect gas is greatly reduced, to values as smal~&3 for
tions, separated by vertical distangen the incompressible T,/T,=11[5].
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Relaxing the linear assumption of RB convection, labora-above or below. The thicker the stable layers of the sandwich
tory studieq 6] have shown that nonlinear convective flows the smaller the flow speeds when overshooting plumes reach
can achieve a steady state provided that the driving is not todhe computational boundaries: in this context the relevant
strong(Ra/Ra;=10-20. In the limit of strong driving, the thickness of the layers is measured in terms of the contrast in
flows become turbulerf6]. In the case of compressible con- density and/or pressure from top to bottom. In terms of den-
vection, the nonlinear regime exhibits subsonic flows wherfity scale heightH,=dz/d Inp or pressure scale height
the driving is not too strong, shocks may form in strongly Hp=0d2d Inp, the convectively unstable layer is effectively
driven flows[7], and convective cells have vertical extentsiSolated from(nonphysical boundary effects if the stable
comparable to the local scale heigl&d]. In the present |2Yers are several scale heights thick.
paper, we are interested in time-dependent behavior of a cy- ) _
clic nature: since turbulence might mask the time behavior B. Astrophysical convection
we are studying, we choose cases where the driving is not So Convection zones in solarlike stars are bounded above
strong as to lead to turbulence. and below by layers of stable gas. Therefore, if we can de-

Relaxing the RB assumption of prescribed temperaturegermine the properties of convection in a sandwich configu-
on the boundaries, astrophysical convection is typicallyration, it may assist in interpreting certain features of astro-
simulatednot by specifying thetemperatureon both bound-  physical convection.
aries, but by specifying théeat flux inputon the bottom Several previous numerical simulations of compressible
boundary and the temperature at the {dp]. This set of  convection in configurations where unstable gas is in contact
boundary conditions is very different from that which is typi- with one or two stable layers have been repofteld13—-14.
cally used in laboratory conditions: in the laboratory, with The principal emphasis in those investigations was to ad-
fixed temperatures at top and bottom, there are no constrainggess the question: how does convectispecifically, over-
on the heat flux. As a result, the heat flux that is carried byshooting affect the adjacent stable gas?
conductionF ;,,q may be small compared to the flux that is  The emphasis of our work is the inverse of that in Refs.
eventually transported by convectii . The Nusselt num-  [11,13—-16. Here our aim is to address the following ques-
ber Nu=F ¢/F .,,¢may therefore be large in such conditions. tion: how does the presence of adjacent stable gas affect
In contrast to this, if we apply the boundary condition that aconvection in the unstable layer?
certain flux is inputted at the bottom boundary, then to
achieve thermal equilibrium in the initial configuration, the C. The focus of this paper
thermal conductivity cannot be arbitrarily small: as a result, . , )
even when convection is fully developed, Nu remains very 10 achieve our aim, a key aspect of our work is a com-
modest: N&<2.5(m+1) [17]. For example, in a case where Parison and contrast of two carefully controlled simulations.

m=1, the maximum value of Nu is found to be no more thanThe first (the one-layer cagecontains an unstable layer of
1.25[11]. compressible gas in contact with impenetrable boundaries.

Relaxing the RB assumption regarding depth indepen:rhe second contains the identical unstable layer as in the first
dence, the diffusivities can be given significant depth depen¢@Se, except that now the layer is sandwiched between thick
dences. In such cases, the evaluation of criteria for the onskYers of stable compressible gas above and below.

of convection requires numerical integratid®]. The values In both cases, the same heat fluxes are inputted at the
of Ra,; in some cases are several orders of magnitud@onom boundary, the same temperatures are assigned ini-
smaller than Rayleigh’s original number. tially to the top boundary, the same depth dependences are

Finally, in an attempt to allow for the fact that astrophysi- 2SSigned to the diffusivities, and the same driving strengths
cal convection includes no material boundaries, the RB asR&/R&. are assigned to the initial states. By choosing con-
sumption concerning impenetrable boundaries can be relaxélitions in this way, our aim is to isolate and identify those
by placing layers of stable compressible gas above and p&ffects that are_due to the presence or absence of impen-
low the unstable layef13]. For brevity, we refer to this €trable boundaries. _ _ _
configuration as a “sandwich.” A schematic illustration of a  1n€ equations and methods we use in our simulations are
sandwich can be seen by referring to Fig. 4 below, althougl’i’_“t“”eq in Sec. Il. We present our resqlts in Sec. Il and the
Fig. 4 as such is not strictly applicable to the sandwich caséliscussion is in Sec. IV. We conclude in Sec. V.

The relevant point here is that we are looking at fluid in the
X-z plane, withz being vertical. The fluid is 6 units of length Il. EQUATIONS AND METHODS

deep and 2 units of length wide. At time=0, convectively The conservation equations of mass, momentum, and en-

unstable fluid is confined to the region where arrows ar : ; :
plotted in Fig. 4. In the case that we refer to as the “one?[eggglzcig be expressed in the nondimensional form

layer configuration”(see Sec. Il C beloyy the convectively
unstable fluid is bounded above and below by impenetrable
walls. In the sandwich case, the impenetrable walls are 9
moved toz=0 and 6 and the “blank” areas above and below —+ —— (pv;)=0, D
the “arrowed” region in Fig. 4 are occupied by stable gas in J

immediate contact with the unstable gas. The temperature is

fixed atT=1 at the top and the heat flux is prescribed at the

bottom. As time progresses, convective flows develop in the % T @ - i a_p + L ﬂ 2)
unstable gas and some of these overshoot into the stable fluid at - lax yp 9% p Re dx;
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Peax,

ap ap I y vy (see Sec. | A aboveindicating that once the dissipation pa-
gt Yigx p4Y K*‘(V—l) Re 7k ox. rameters Re and Pe are chosen, Ra is no longer an indepen-
! ! ! dent parameter. The product RBe will also appear below
p when we define a “dynamic” Rayleigh number to character-
;) : (3 ize our flows[see Eq(8) below]. We solve the equations as
an initial boundary value problem on a two-dimensional grid
The equation of state is that of a perfect gas: in nondimen©f SiZ&N,XN;.
sional units, this is given by

p=pT. (4) A. Boundary conditions
In the horizontal directions, the boundary conditions are

In Egs.(1)—(3), t is the time and; ,v; are the components of periodic. In the one-layer case, unstable gas is in contact with
direction and velocity vector, respectively, withvertically  impenetrable stress-free walls at top and bottom. On the top
upward.g is the(constant vertically downward gravityyis  wall the temperature is specified and on the bottom wall the
the ratio of specific heats: we take it to be constant and equaleat flux is specified.
to 5 in this work. oy; is the viscous stress tensor. In the sandwich case, a convectively unstable layer with

In Egs.(1)—(3), T, p, andp are expressed in units of their identical thermal and mechanical properties to those in the
respective values at the top of our computational donigin, one-layer configuration is placed with a stable layer on top
p:, andp;. The velocities are scaled in units of the adiabatiC(severa|Hp thick) and a stable layer undernea[tﬂi—Z)Hp
sound speed at the tap=(yp/p,) >. Our unit of lengthL,  thick]. Ideally, the thicker the stable layers, the more isolated
is defined to be such that the width of the horizontal domairthe unstable layer from boundary effects: the values we
is equal to 27L, and the depth of the domaing,,L,. FOr  choose here are a computational compromise, and we shall
all runs reported here, we choogg,,=6. Time is measured see below(Sec. IV B that as long as the stable layers are
in sound-crossing unitsq/c, at the top of the domain. In  thicker than about OH,,, this suffices to isolate the convec-
these units, gravity; is expressed in units aff/Ly; oi isin  tive flows from boundary effects. The top and bottom bound-
units of uci/Ly, where y, is the dynamic viscosity at the aries of the computational domain are stress-free impen-
top. ConductivityK is in units of the conductivity at the top etrable walls with the same thermal boundary conditions as
Kt. in the one-layer case.

When fluid equations are integrated, the level of dissipa-
tion in any particular run is prescribed by assigning numeri- B. Initial conditions: Sandwich convection
cal values to any two among a set of four dimensionless ] ) } ]
numbers: the Rayleigh number, the Prandtl number, the Rey- FOr the sandwich simulations, we waf#T/dz| in the
nolds number, and the Blet number. In material that is Center of the domain to be steep enough so as to be convec-
incompressible, one frequently has at least an order of magively unstable, while near the top and bottopdT/d]
nitude estimate of the mean flow spdag: it is typically the shOl_JId be shallo_w _eno_ugh to ensure C(_)nvectlve stability. In
speed that is imposed on the flow. Moreover, one also ha@e interest of eI|m|nat|n.g numerical grnfacts from thg solu_-
some knowledge of the length scaleover which flow vari- ~ ions as much as possible, we avoid the use of piecewise
ables change appreciably: this allows one to define a ReyRontinuous expressions: we prefer to use an analytic function
nolds number or a Rtet number in terms olU,,, e.g., for the temperature profile. The expression that we chose for

Re=U_L/v and Pe-UL/x. However, when we deal with T(2) is

thermal convection, the mean flow speed is unknown and B 5

cannot be assigned a value beforehand: the flow speed is part T(2)=To+a In[(z=29) + (z=20)"+1]. @)
of the solution that we must obtain by integrating the equa-

tions. Therefore, we are forced to define Re and Pe in teMge e,  the location of steepest gradient, is chosen near the
of a speed other than the flow speed: since we are dealing,ier of the domain and, is given a value there. Onag

with com_pressible material, the natural unit of speed in th ndT, are givena is assigned énegative value such that at
proplem IS th_e sound speed. 'A.‘S a rgsult, we choose the fo he topT—1. In the runs to be reported below, we chose
lowing definitions for the two dimensionless parameters thaE0:3_4 andT,=3.6. With these choicess=—1.544. The

control the amount of dissipation in our compressible flows:y,o0m temperature in this caseTi§=6.6. The temperature
Lc profile T(z) with this choice of parameters is shown by the
Re= P10 L (5)  solid curve in Fig. 1. The profile of the adiabatic gradiggj
Mt is shown in Fig. 1 by the dashed line: the slope of this line is
—6/5, corresponding to our choice gi=—3.0 (see below
o piLoCiCp ® Compressible material is convectively stafflenstable in
K regions where the slope of the solid line in Fig. 1 is steeper
than the slope of the dashed line, i.¢dT/dz< (>)
Note that Rez,~ 1/v,, where, is the kinematic viscosity at |dT/dZz| 4. Visual inspection of Fig. 1 shows that the slope of
the top, and Pe[~ 1/k,, wherek; is the thermal diffusivity  the solid curve is shallower than adiabatic near the bottom
at the top. Thus the product of our two dissipation numbergz=0) and also near the tofz=6), while at intermediate
RexPet? scales as 14, : this combination of parameters depths, there is a portion of the solid curve that has a steeper
appears in the original definition of the Rayleigh number Raslope than the dashed curve.
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FIG. 1. Solid curve, dimensionless temperature profie) in FIG. 2. Dashed line and open triangles, dimensionless entropy

the initial configuration; dashed line, adiabatic temperature profilegradientdSdz as a function of vertical coordinate in the initial
sandwich model. Stable layedsS/dz>0 exist at the top and bot-
To make this visual impression more quantitative, wetom: an unstable layatS/dz<0 lies between the two stable layers.
note that, once the temperature profile is chosen, the depplid lines, profiles odSdz when the flows are in the nonlinear
dependence of the polytropic index follows from the pre- regime; inset, profiles ol S'dz in simulation of one-layer convec-
scription given in Sec. 1A above:m=(g/[dT/dZ])—-1 tion; dashed line, initial profile; solid line, profile in nonlinear re-
(whereg is a negative number in our notatjorGiven the  gime.
temperature profild (z), the initial pressure profile is com-
puted by integrating the hydrostatic relatiatp/dz=pg  unstable region extends fromg~2.6 to z,1~4.2, corre-
downward from the togwherep,=1 andp,=1) using the sponding to the horizontal bar near the lower boundary of
equation of stat¢4). The absolute value af and the profile  Fig. 2: the extent of this bar is 1-2 times the lotf). The
of m combine to determine the pressure contrast across thiickness of the lower stable regign~0-2.6 also corre-
domain. In the runs reported below, wigh=—3.0, the pres-  sponds to 1-2 times the lochll, .
sure contrast is 492. In this case, the polytropic indekas
the value 4.4 at the top, 5.9 at the bottom, and has a mini-
mum of 0.943 near the middle of the unstable layer. As was C. Initial conditions: One-layer configuration
mentioned abovem<1.5 suffices for convective instability | the one-layer configuration, we choose only the portion
in the material we considefa perfect, nonionizing g&s  of the above temperature profile that is unstable, i.e., we
Once a value is assigned go the adiabatic temperature gra- consider only the fluid that lies betweeng and z,; and
dient (dT/dZ),giapis Obtained from @T/d2)qis=9/2.5: this  place an impenetrable wall at each of these depths. In this
is the equation for the dashed line in Figivith T=1 at the case,N, X N,=64x34. At heights between g andz,; the
top). o ) initial temperature profile and the initial entropy profile are
The plot of temperature profiles in Fig. 1 is not the only chosen to be identical to the profiles that we use in the sand-
way to illustrate where stability and instability occur. An ich case. The inset in Fig. 2 illustrates&/dz for the one-
alternative approach is provided by considering the entropyayer case: the horizontal positioning of the inset is such that
S~In(p/p”). In an adiabatic procesS=const. Therefore, at the range of values in the inset is aligned with the range of
locations wherel S/dz<<0 (>0), the material is convectively 7 yalues that are unstable in the sandwich dase the hori-
unstable(stablg. In Fig. 2, open triangles joined by a dashed zontal bar near the bottom of Fig).2The dashed line with
line indicate the vertical gradient of entropy¥dz (horizon- triangles in the inset is the initial profile afSdz and is
tally averagedlin the initial configuration(The continuous dentical to the corresponding portion of the dashed line in
lines will be discussed belojWNote that the values afS'dz  the main part of Fig. 2. In the inset, the initidiS/dz is
are positive near the top and near the bottom, indicating thantirely negative, i.e., convective instability extends through-
the fluid there is convectively stable. HowevetS/dz is oyt the domain and convective flows come in contact with
negative(i.e., the fluid is convectively unstablat interme- impenetrable walls at top and bottom. This corresponds to a

diate depthgFig. 2). Note that the dashed profile in Fig. 2is gne-layer configuration similar to the ones that have been
in hydrostatic equilibrium. The thermal conductivity is given stydied in the literaturés,g].

a z-dependent value such that the conductive heat flux is
constant at all depths. ' . RESULTS
Across the upper stable regidm~4.2—6, the pressure
varies by a factor of 30—40. Thus, in terms of local pressure To initiate flows we impose a small vertical velocity in
scale heighH,, the upper stable layer is4H,, thick. The  the domain. The equations are then integrated in time for
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many hundreds of sound crossing times. In the one-layer 44
configuration, convection rolls develofsee Fig. 4, and =
these become steady in time. In the sandwich case, the con-
vective flows that develop are time dependent and overshoot
into the overlying and underlying stable fluids. In order to

describe our results, it is helpful first to introduce a param-
eter that essentially extends the concept of the Rayleigh
number(well known in linear stability theoryinto the non-
linear regime.
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A. Dynamic Rayleigh number

Ever since Rayleigh'§1] work, it has been traditional to
characterize the convective stability properties of a container 2
of depth d in terms of the Rayleigh number
Ra=g(1/kv)d*g|a: the ordering of the terms in this expres- i
sion is chosen for ease of comparison with E8). below. ol Lo L e Loy
The above definition of Ra is a static one and Ra is evaluated 0 50 100 150 200 250
at a particular deptkso thata=1/T can be specifidand at Time
a particular timgt=0). However, in the present case, a static
definition is of limited value: neither the depth of the con-
vective layer nor the value g8 is fixed in time, nor isgB
independent of depth at any tinfeven att=0). As a result,
there is no unique way to define “the” traditional Rayleigh
number in the present case. pointwise information is smoothed out in Rahowever,

In the present work, in order to have a parameter thathere are no drastic differences in the behavior of the con-
describes the convective stability properties of the sandwickection over anx-y plane. As a result, the unstable layer
case, we choose to define an instantaneous “dynamic meafith d.4~(1.3—1.4L, in the nonlinear phases occupies 20—

0.0005

T

T
IIIII

FIG. 3. One-layer convection: time histories of dynamic Ray-
leigh number Ra[defined in Eq(8)] (solid line) and dimensionless
convective flu{defined in Eq(9)] (dashed ling The units of time
are the sound crossing time.

Rayleigh number” Raat timet as 25 % of the computational domain. We recognize that a
more formal definition might be useful, but in the present
Ray(t)=|g|| Rex Pe d4 (t B (8) study, the above definition of Raserves our purposes ad-
aj gl 2 eff T t "
Ct (O / giobar equately.

The analogy with the traditional definition of Ra is apparent: B. One-layer configuration

the terms R&Pekt 2 in Eq. (8) corresponds to the terms«i/ The one-layer simulation was started from initial condi-
in Ra[see the discussion following E¢6) abovd and the tions such that Rft=0)/Ra~44.[The value of Rg; for
terms|g|a in Ra appear af3|/T inside the angular brackets the prescribedl(z) was determined numerically using the
in Eg. (8). In the limit m=const anddT/dz=const, Rg as  same time-dependent approach that we used in our previous
defined in Eq.(8) reduces to the original definition by Ray- work [12,17.] The time history of Rais shown as a solid
leigh[1] (sincea=1/T for a perfect gas The angular brack- line in Fig. 3: the initial relatively large value is maintained
ets with the subscript global denote an instantaneous spatigp to times of some 30—40 sound crossing times. Then, the
average oveall sites in the domain where the temperatureconvective flows begin to enter a nonlinear regime where the
gradient is superadiabatic at tiheBecause Eq8) includes maximum velocities grow rapidly. To quantify the convec-
information at all superadiabatic sites in the domain, the pative heat flux, we consides globally averaged quantity
rameter Rgallows us to characterize the convective stability

properties of the domain in global manner. In particular, it ZUT(pU AT)nodz
is important to note that we art restricting our consider- s ho
ations to a single horizontal plane, but rather are averag- Fe(t)= 9

. S . Zyt—ZuB
ing over every point in the domain where the temperature

gradient is instantaneously superadiabatithe quantity In the integrandy, is the instantaneous vertical velocity and
des(t) represents a crude attempt to characterize the instarkxT is the difference between the instantaneous temperature
taneous depth of unstable fluid: it is obtained by evaluatingat timet and the initial temperature at the same location.
the instantaneous(t) at each site in the griflsing second- Angular brackets with the subscript hor indicate averages
order centered finite differengescounting the number of over a horizontal plane at tinte Integration over allows us
sitesN,, at which the temperature gradient is superadiabaticto average over the unstable zone in the vertical direction. By
and then definingle as dXNy/(N,XN,), whered is the taking the global average in E(@) over all heights between
depth of the computational domain. In our rudgs turns out  the bottom of the unstable layeyg and the top of the un-

to have values that are close to the original choice for thestable layeg;, we are allowing for the fact that, at different
depth of the unstable layer: in units bf, des turns out to  instants in time, the convective flux may peak at different
have values of about 1(3ee Fig. 2 The global average that horizontal levels within the convection zone. The time de-
we use in obtaining a numerical value for Raeans that pendence ofF. is shown by the dashed curve in Fig. 3.
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6 —1—1— — — other that our graphics resolution cannot separate them. This
is a good indication of the steadiness of the flow regime that
has been established.

- ] We can summarize this subsection as follows: our simu-
L . lations are consistent with empirical results that show that
when a convectively unstable fluid is in contact with impen-
etrable boundaries, the convective flogahachieve a steady

state provided that the driving is not too supercritifal.
Our simulations are also consistent with previous simulations

e [5,9].
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2 — I C. Sandwich convection

In Fig. 5@ we show time histories of Rasolid line) and
- . Fc (dashed ling in a simulation of sandwich convection
i with Re=10 and Pe2. In Fig. Ha) it is important to note
that we choose the strength of the convective driving to be as
0 5 4 6 close as possible to that in the one-layer case, i.e., the initial
X Rayleigh number Rgt=0) in Fig. 5a) is as close as we can
make it(within the constraints set by the discreteness of the

FIG. 4. Snapshot of velocity vectors in one-layer convection. grid) to the Rg(t=0) value in Fig. 3. Despite our careful

choice of the same initial parameters in Figs. 3 afal,3he
Although we could, in principle, expreds; in terms of a  results for the sandwich configuration are qualitatively quite
Nusselt number, this is not especially relevant with thedifferent from the one-layer case: the initial stage of large
present boundary conditiorisee Sec. | A abovg. (and constantRa, persists for only~20 time units. Now,

As the convective flows develof;: enters a phase of the convective flux rises to its first maximumtat30, caus-
rapid growth(in the time intervalt=40—60: see the dashed ing dT/dz—dT/dz,g,,because of the nonlinear interactions.
curve in Fig. 3. During the time interval whefr is rising  This corresponds to a precipitous drop ingR# this case,
to its maximum, it is obvious from Fig. 3 that there is a there are no boundary regions to prevemtdz from becom-
precipitous drop in the value of RaAfter a couple of small ing very close to, or even falling beloyin absolute valug
oscillations, the system adjusts to what is clearly a steaddT/dz,y.,. The lack of such control has the effect that part
state: for times in excess 6100, both RgandF. in Fig.  of the initially unstable layebecomes convectively stable
3 remain invariant. The value of Rén this steady state is i.e., the unstable region becomes somewhat narrower. To il-
smaller than the initial value by a factor of more than 10: thelustrate this narrowing of the unstable region, we plot the
flows have caused the mean temperature gradient to aprofile of dS/dz at about a dozen instants in Fig.(&olid
proach closer to marginal stability by an order of magnitudelines). The separate profiles are slightly different from one

When steady state is achieved, the entropy gradi&dz  another, giving the impression of a broad black curve in the
has thez profile shown by the solid line in the inset in Fig. 2. figure: close inspection, however, will reveal that there are
The solid line shows thad §dz still remains negative from many individual profiles superposed, and they cycle back
z=3.2 to 4.2: thus convective instability persists over thisand forth as time progresses.
range of depths. There is also a narrow region of depths from Following the initial precipitous drop in Rathe numeri-
z=2.6 to 2.7, wheralSdz is also still negative: this is the cal values of Raand F. both exhibit behavior that to the
lower boundary layer that remains convectively unstable. Foeye appears rather cyclic, with a period of about 30—-40 di-
the intermediate range of deptfis=2.7—-3.2, dS/dzis posi- mensionless units: - cycles back and forth between “high”
tive. (The presence of an extended region of positi&dz  and “low” states. The fluctuations iF . in the course of the
in a convection zone with an impenetrable wall at the top hagycle are by no means small;; is some 2—3 times larger in
also been pointed out if18].) Fluid in this intermediate the high state than in the low state. The numerical values of
region has become formally stable to convection becausRg, oscillate above and below a mean value of,Re2. To
nonlinear interactions tend to drive the system toward stabilguantify the period of the oscillation, we computed power
ity. However, flows that are being driven by the upper andspectra(not shown for the time profiles ofF-. and Rg:
lower unstable boundary regions have enough instability tanaximum power indeed occurs at the period of 33 in dimen-
maintain fluid motions in the formally stable zone. To illus- sionless units, consistent with what the eye picks out in Fig.
trate this, the velocity vectors in a steady state are shown iB(a).

Fig. 4: the figure shows convection rolls extending from the As regards the temporal behavior of the cycles i &ad

top to the bottom of the convective layén agreement with F. in Fig. 5a), we draw the reader’s attention to a clear
the simulation results if5,10]). Maximum velocities in the phase relationship between the cycles. Inspection of F&y. 5
flow are 0.52 in our dimensionless unii®., Mach number indicates that there is a 90° phase shift between the two

relative toc,). guantities: when Rareaches an extremunk,. reaches an
Although it is not immediately apparent, there are actuallyextremum in its first time derivative and vice versa.
several profiles oflS/dz plotted with solid lines in Fig. 2 In the initial state, the unstable regions extended from

(insed: they are “snapshots” taken from various instants of z ,5=2.6 toz,;=4.2 (see the dashed profile in Fig.. How-
time in a steady state. However, they are so similar to eachver, at later timesj Sdz is negative only over a more re-
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10 T T 0.03 stricted range ok (Fig. 2). The lower part of the initially

r . unstable layer has been eroded by the tendency towards sta-
- bility, and there is no compensating effect of a lower bound-
8 - ary layer: the unstable region now has a bottom boundary at

B - Z,5~2.9-3.0. To be sure, the upper regions of the initially
— 0.02 unstable layer have also encroached upon the overlying
stable layer slightly(z;~4.3): but this is not as large an
effect as what has happened at the lower boundary. The
overall effect is for the unstable layer to be now somewhat
thinner than initially. Moreover, the thickness of the unstable
layer oscillates about its new mean value.

In order to increase the strength of the driving, we in-
creased Re by a factor of 2 to R&0, but kept Pe2. Re-
sults are shown in Fig.(6). Again, cyclic behavior is evi-
SRS Ay ’ dent, with a period of about 35 units, almost the same as that
ol e b Ll in Fig. 5@a). However, in Fig. B), the values of R@QSCi!-

0 100 200 300 400 500 late above and below a mean value ofyR&4, which is
(a) Time about twice as large as the corresponding number in Fig.

5(a). Finally, in order to investigate the dependence on the
L I I N A N B B IIIJ}IIODS P'e:letnumber,weshowarunforPdinFig.E:(c):inthis
i = run, we set Re5. Now the predominant period in the cycle
- ’ is about twice as long as before: the power spectra peak at
& — periods of 60—62. Moreover, the values of;Rew oscillate
15 - around a mean level Rg~=1. We return to these results
B 002 below in our discussions of scalingSec. IV O.
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T
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0.01

IV. DISCUSSION

The contrast between the one-layer case and the three-
layer (sandwich case is striking: in the one-layer case, the
— 0.0 convection is steady, but in the sandwich case, it is cyclic.

Dynamic Ra
XN|4 8AIDBAUOD

- A. Steady convection in a single layer

i {'"':‘i ¥ . 1"| g |"' B I“‘ L, The temporal behavior in the one-layer simulation can be
0 0 100 200 300 400 500 0.0 understood in a straightforward way. Initially;T/dz is steep
(b) Time enough so that conduction carries all of the flux that is in-
putted at the lower boundary. However, the temperature pro-
10 T T 0.03 file is highly unstable and Rds large. Because of the insta-
- bility, convection begins. On time scales of tens of sound
- crossing times, there is a sharp increase in the heat flux trans-
8 % - ported by convectiorr-. As the convective flux increases,
- dT/dz throughoutmostof the fluid flattens, approaching the
ol 0.02 marginally stable (adiabati¢ gradient dT/dzg,, AS
dT/dz—dT/dz,, |8—0. The more flux convection car-
ries, the less burden is on conduction and so the shallower
the temperature gradient can become. The value gf(Ba
we have defined )ttherefore drops: the rate of decline inRa
Ik is steepest wheR ¢ is maximum. As Rgdecreases, i.e., as
L ou |8| decreases, the tendency for convection to be driven near
the center of the domain declines: as a rede}, falls off
from its maximum value. However, althoughost of the
SRR QL /L T N T T 7 fluid is tending towards adiabatic conditions, thiss true
LV 7 of two key regions in the flow: the thermal boundary layers
00‘ = 'ﬂlm’ L '2(])0' - ‘3!)0' e ‘4(')0' - '5!)0' 200 at the top and bottom remain convectively unstable and they
© Time continue to drive the convection throughout the interior of
the convective domain. Because of the accessibility of these
FIG. 5. Sandwich convection: time histories of dynamic Ray-unstable layers, the convective flows in the main body of the
leigh number Ra (solid line) and dimensionless convective flux Convection zone do not stop, but can continue to be driven.
(dashed ling (a) Re=10, Pe=2; (b) Re=20, Pe=2; (c) Re=5,  The steady-state nature of the flows is apparent in the late
Pe=4. stages of Fig. 3.

Dynamic Ra
T
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It is the essence of the one-layer case that the fluidiimensionless unitéwhere one unit of time equalsy/c;),
throughout the domain has direct access to unstable bounthis leads torg,,~PdL/Ly)?
ary layers at the top and bottom. Scalings that have been In the course of a cycle, convection first sets in because
derived for turbulent RB convection in order to explain em-Rg, is large and therefore the growth times for the convec-
pirical results[19] depend explicitly on mixing of the mate- tive modes 1y, are quite short. But as convection develops,
rial between the unstable boundary layers and the main bodhe temperature gradient falls so close to adiabatic that
of the fluid. These scalings are rather successful in reprodudkg;—0: when this happens, the convective growth times
ing the empirical results, where values of Ra as high @8 10 7,4~ 1/y.=>Rag ! become very long. Eventuallyrgi., be-

have been achieved in Boussinesq conditions. comes longer tham,,,4 at this point, energy transport be-
comes dominated by conduction. As a result, the temperature
B. Cyclic convection in the sandwich gradient begins to steepen in order to carry the flux that is

inserted at the lower boundary. The time scale for this steep-

In the simulation of sandwich convection with equally ening is 7..: with Pe=2 [as in Figs. %) and 5b)] and
cond* '

strong driving, addT/dz—dT/dz,4, the unstable layer is ° ) ; .
unable to carry much convective flufote that, because the L/Lg~2-3, 7gonq IS predicted to be of order 10-20 in our
amount of dissipation in the runs is chosen to be finite,un'ts' This is about one-half of the cycle times in Figa)5

|dT/dZ need not fall belowd T/dZz| .44 for convection to be and is consistent with the rise times of the cycles.
choked off) As a result,F declines, and the convection As the temperature gradient steepens, Rareases and

looks as if it may “shut down.” In this case, because of thethe convective time scales become shorter: when they fall

adjacent stable layerthe convection zone has essentially noDEIOW 7cong CONVeCtion takes over the energy transport and

contact with any unstable boundary layer fluid for driving "€ Cycle begins anew. The cycle occurs becaugeoRail-

However, as less and less flux is carried by convection, thlea:](?sh a;tt)]ove and tk_)elow a t?:?.an asygw(rggﬂcpgce/\ée&nl?at
energy equation demands that conduction begin to carr Ich the convective growtn tmeggiq= &im 1S

more and more. Thereforéd T/dz| must increase to allow omparable treong. TO see that this is the case in Fidab
conduction to transport most of the flux inserted into theote that Rgy,~2: since Re=10 and Pe-2 in this casqsee

domain at the base. The increase|dT/dz causes Rato the caption of Fig. @)}, this means thakgu>6dex, and

increase again, the convective flux builds up, and the deg,incedeﬁ~1.4(in our units, this leads toryja>12. Indeed,

: . the time scales of declining portions of the cycles in Fig.
g,i?gs on conduction become less severe. This sets up a) are of order 10—20 units of time. The shape of the cycles

No steady state is reached: each time convective flus Fig. 5(a) is roughly symmetric in time, suggesting that the

reaches a maximum value, Randergoes its most rapid rate ow condltlo_ns have adjusted in such a way tbanvectl_ve
of decline, and every tim&. reaches a minimum, Rax- and conductive time scales tend to be comparable during the

periences its most rapid rate of increase. The conductive an?PL_‘rrﬁ? of thle c_ycle ts that it énductioneffects that
convective fluxes behave as a sort of flip-flop oscillator in IS analysis suggests that it eonductionetiects tha
which no steady state exists. control theperiod of the oscillation, whereas it isonvection

effects that control the limiting mean value of RaThe
flows adjust themselves so that the dynamic Rayleigh num-
ber Rg has an asymptotic mean value jRasuch that the
The (pseudgperiod of 30—40 units for the cycles in Figs. convectivegrowth time scale becomes comparable to the
5(a) and 3b) is controlled by a balance between the forcesconductivetime scale.
that drive convection and the forces that drive thermal con- To test that the scalings are as suggested here, we refer to
duction. The convective forcéshich tend to make the tem- Fig. 5b), where Pe is unchanged from Fidapb If the cycle
perature gradient adiabatic causing;Ra fall towards zerp  time scale is controlled by the conduction time soas we
can be characterized by a time scalg,,that is expected to have suggested abgyehen since the conduction time scale
scale as Y., where y, is the growth rate of the fastest depends on Pe but not on Re, we would expect to see the
growing convective mode. The value ofy, is same period in Figs.(8 and 3b). This is consistent with
controlled by the strength of the convective driving Ra:what we see. However, the increase intfe by a factor of
for the incompressible case, Rayleighl] found about 2(from 12 to 23 in going from Fig. %a) to Fig. 5b)
ve=<|Bolagd?/(x+v) [see Eq(49) in [1]]. In the compress- suggests that, if we are to keep the convective time scale
ible case|3,| must be replaced by the superadiabatic excess-(Re+Pe/Ra,, fixed at the same value as before, the as-
(the quantity|8| in the definition of Rg) and «=1/T: the  ymptotic mean Rg, about which the cycle will oscillate
combination|g|g/ T occurs in our definition of RA[Eq. (8)].  should increase by a factor of about 2. In fact, it can be seen
With an aspect ratio of order unity in our case, Rayleigh'sin Fig. 5b) that at long times, Rgoscillates about a value of
scaling for the growth rate becomés our dimensionless about 4, i.e., indeed higher by a factor of about 2 than in Fig.
units) 7,gi=d24([Ret+Pel/Ray). 5(a). Finally, in a run with Pe-4 and Re=5 [Fig. 5(c)], we
As regards conduction, the appropriate time scale igxpect to see a thermal conduction period about twice as
Teond=L?/x, WhereL is the dimension of the region over long as with Pe=2: in fact, the predominant period in Fig.
which the conductive heat transport must operate: in oub(c) is 60—65, i.e., about twice as long as in Figéa)5or
case, with an unstable layer of vertical thickness5(b). In Fig. 5c), with Ret+Pe now having a value of[9.e.,
d.z=(1.3-1.4L, and horizontal extent 6,, typical values close to its value in Fig. ®], a doubling of the convective
of L might be in the rangé2—3)L,. In terms of the Pelet  growth time in Fig. %c) relative to that in Fig. &) can be
number[Eq. (5)], this meansr,,,~Pe(/Ly)?L/c,. In our  achieved by reducing Ra by a factor of about 2 in Fig.(6)

C. Origin of the cyclic behavior
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compared to Fig. ®). In fact, we see that Rg in Fig. 5(c) 6

T T i 1 j T T T T
settles down to values of about 1, i.e., a factor of about 2 N 3 NI .
smaller than Rg, in Fig. 5a). Thus the scalings we derived G esLZIZIIIITIUIIIIIIII
above seem consistent with the numerical results. R TPttt
NV S i NSNS L Y 2 ]
NI e sasaiaNTes
D. Contrast with time dependence due to turbulence SS S S ‘,’ re ;j;::::::tti //;:
[ AR N
The cyclic behavior that we describe here is only one Yinin f;' NN /gt
possible form of time dependence that may occur in convec- R NN G U
tive flows. For example, it is well knowte.qg.,[6,19)) that NI
time-dependent convection can be caused by setting NN\ ;;i:§
Ra,(t=0) in excess of some value: in such cases, the driving SIRERE ZZ:--:':b\i RSN
may be so strong that the flows become turbulent. However, e NN
in such cases, the temporal variationg-igand Rg (if there AR R R AR b ey
are any would probably be controlled by turbulent pro- DN NN
cesses: because of the nature of turbulence, we might not NN
expect to see a clearly defined phase relationship bet#wgen ) BT M BT I SR S
and Rg in strongly forced convection. Y 2 4 6

In the present paper, we have explored a mechanism that
causes convection to become time dependent for quite dif-
ferent reasons: we have chosen the driving to be not so
strong that turbulence occurs. In fact, we have been carefq
to choose driving of such a strength that we can demonstrate
that the convective flows are steady in the case where i

FIG. 6. Snapshot of velocity vectors in the two-dimensional
ndwich. The vertical black bar along the right-hand side denotes
e initial location of the unstable convection zone.

M5 our contention in this paper that it is precisely thek of

€Giccess to convectively unstable boundary laythes allows

tion: then, with exactly the same amount of driving, we havey,o ¢,nyection to enter the cyclic regime. Therefore, we sug-
found cyclic behavior in the sandwich configuration. Thus

) ; ) "gest that as long as the stable layers are thicker tha 0.7
the tlmg dependencg we describe here has nothmg to do wi clic convection becomes possible.

that which appears in a turbulent flow. In the cyclic case, the
flows exhibit a definite phase relationship betwden and
Ra,. The existence of this phase relationship might provide
us with a means to determine whether the time dependence We suggest that our results may be applicable to solar
in a particular convective flow is due to boundary conditionsconvection, where convection occurs in a sandwich configu-
(as in the cases reported heoe to a high degree of super- ration, with convectively stable material above and below.
criticality.

F. Applicability to convection in the sun

1. Fluctuations in solar flux

E. Penetrative convection Let us consider our result th&t: exhibits large fluctua-

In our simulations, we see the effects of penetrative conlions (of order unity in the course of a cycle. It is important
vection in the lower stable layer: a snapshot of the velocity!® Note that the computational domain that we used for our
vectors for the sandwich configuration is shown in Fig. 6.Simulations is not large enough to accommodate more than
We see downward plumes extending as much ald Qifito 1-2 convective cells. If a larger domain were used, including
the stable layer: there are algomodes in the stable layer N cells, we expect that the amplitude of the fluctuations in
with frequencies comparable to the local Brunt-Vaisala fre-Fc would be reduced by factors of ordgiN. If we could
quencyvge= /_QCVB, which are excited by these plumes. The F'un & domain wittiN=1C° cells[i.e., the number of convec-
fact that our simulations contai modes in the stable fluid tion cells(granules on the surface of the slinve expect that
is in agreement with previous simulatioft0]. The presence the fractional fluctuations ik would be reduced below
of oscillations atvg in a stable fluid adjacent to a convec- What we flnd[O(l)]_tg O(10°°). The flux of energy from the
tively unstable fluid has also recently been reported in #Un(Fs=1367 W m ) is known to eXh_r'I%"t temporal fluctua-
laboratory experimer{20] where convection is driven in an tions with amplitudes up to 1-2 W'm [21]. The largest

unusual moddusing horizontal temperature differenges negative e_xcursions.can be ascribed to sunspots, but the data
The length of the overshooting plumes allows us to ag-also contain fluctuations that cannot be ascribed to sunspots,

dress the following question: does the transition from one@nd these can also be of order $@f the mean value. We

layer to sandwich convection occur for arbitrarily thin uploernote _the coincidence with our estimates of convective flux
and lower stable layers or is there a critical thickness abov@MPplitude.
which these heat flux cycles set in? If we were to choose

stable layers that were thinner thani9 7, then someor all)

of the overshooting plumes would “sense” the presence of We have argued that the time scale for cyclic convection
the impenetrable boundary at the edge of our computationas controlled essentially by conductive processes. In the sun,
domain. In such cases, the convection would have access tmnduction is dominated by radiative effects. When therefore
the same boundary layers that play such a key role in detewe raise the following question: on what time scale does
mining the properties of convection in the one-layer case. Itonvection in the sun cycle back and forth between high and

2. Time scales of solar variations
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FIG. 7. Solid line: conductiortradiatior) time scale in a solar model as a function of def&f]; dotted line, acoustic flux emitted by
convection(arbitrary units.

low states? The answer will be “the radiative time scale” flux is extremely sensitive to variations in the convective
Tad- FOr a parcel of material of diametér and opacityy  flows: the results in Fig. 7 refer to the mean values in the
(cm 1), the value ofr,qis given by[22] solar mode[23]. In view of the great sensitivity of acoustic
emission tov, we suggest that since the convective flux at
Trad™ Teninl 1~ xL cot *(xL)] ™%, (100 depths of about 100 km is cycling back and forth on periods
of 300—-400 sec, this should contribute to significant period-
where icity in solar acoustic power on periods of the same order. In
_ 3 fact, it has long been known that acoustic modes in the sun
Tinin= pC,/16x 0 T". 1) are readily detectable at periods around 5 min: the energy per
. . mode peaks at a frequency of about 3 mHz, with a full width
ngea is the Stefan-BoItzmann_ constant aﬁ_g is the SP€- " at half maximum of 2.8—-3.5 mH§25], i.e., the acoustic
cific heat gt constant volume. Smce gonvectlve cell sizes in Bmission peaks at periods of 290—360 sec. The overlap be-
compressible medium have dimensions comparablétfo  een this range and the cycling time that we have found for

[%9]’ It seems appropriate dtol S‘f')‘t:th' \lNe evaluate the g, 5 convection suggests that perturbations in the convective
above expression In a model of the solar convection zong,, may be a significant excitation mechanism for solar
[23] and present the results in Fig. 7. The solid curve shows, .o istic modes

Trag (Which, for purposes of comparison with the above dis-

cussion, we refer to ag,,,9 as a function of depth beneath

the level whereT=5800 K. The radiative time scale tends V. CONCLUSION

towards small values near the surface and at great depths. At

intermediate depth&@d~100 km), 7.,,4 Feaches a maximum We have performed two-dimensional simulations of com-

value of 300—400 sec in this model. According to our inter-pressible convection in an unstable layer that is sandwiched
pretation of cyclic behavior, this means that convection inbetween stable layers. In a carefully controlled comparison,
the sun at depths of order 100 km is cycling back and forthve have also simulated compressible convection in a single
between high and low states on time scales of 300—400 seunstable layer in contact with impenetrable walls.

To see the significance of this in the solar context, the We find (in agreement with previous workhat convec-
dotted curve in Fig. 7 indicates the depth dependence of thive flows in the single-layer case can reach a steady state
flux of acoustic powef . (in arbitrary unit$, which is cre- when the layer is driven moderately supercritical. However,
ated by quadrupole terms in the convective Reynolds stress@s contrast to this, we find that when the sandwich case is
[24]: F ,.~pM3v®, wherev is the convective speed aMiis  driven with identical strength, the convective flows dot
the Mach number. Note that the acoustic flux is sharplyreach steady state: instead, they are cyclic. The essential dis-
peaked at depths of order 100 km and the magnitude of theénction between the single-layer case and the sandwich case
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is the following: in the single-layer case, convectively un-the convective growth time scale in fluid that is being driven
stable fluidis in direct contact with unstable boundary lay- with strength Rg,, is comparable to the conductive time
ers whereas in the sandwich casigere are no such unstable scale.
boundary layers
The cyclic fluctuations in the convective heat flEy in ACKNOWLEDGMENTS
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