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Cyclic convection in a zone bounded by stable layers
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Bartol Research Institute, University of Delaware, Newark, Delaware 19716

~Received 9 February 1996; revised manuscript received 21 June 1996!

We have simulated compressible convection in two distinct but related cases:~i! a single layer of unstable
material is in contact with impenetrable boundaries and~ii ! a layer of unstable material that is identical to that
of case~i! except that it is now ‘‘sandwiched’’ between two thick stable layers. The convection is driven
equally strongly in both cases. We find that convection in the single layer is steady, whereas in the ‘‘sand-
wich’’ case, the convection exhibits nonsteady behavior of a particular kind: the convection is cyclic. During
one part of the cycle, the convective fluxFC falls to levels that are too small for energy balance. During the
second part of the cycle, conduction increases in an attempt to restore energy, but this eventually drives the
fluid back to convective instability, with a subsequent increase inFC . In the course of the cycle, the fluctua-
tions inFC are large~factors of 2–3!. We comment on the applicability of our results to convection in the sun.
@S1063-651X~97!05003-4#
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I. INTRODUCTION

The properties of convective flows in a convectively u
stable fluid are determined by a number of factors, includ
the mechanical and thermal characteristics of the fluid,
boundary conditions, and how strongly the convection is
ing driven. Studies of convection in laboratory conditio
typically involve ~a! nearly incompressible fluid,~b! impen-
etrable boundaries with prescribed temperatures, and~c! lev-
els of driving that range from only slightly supercritical
strong. We are interested in simulations of convection in
sun. The differences between conditions in the solar conv
tion zone and in the laboratory are considerable: in the
we must allow for~a! highly compressible fluid,~b! com-
pletely penetrable ‘‘boundaries’’ with ill-defined position
and temperatures, and~c! strong driving. Because of thes
differences, it is possible that certain features of astroph
cal convection have no analog in the laboratory case. In
paper we explore one such feature, namely, heat trans
that cycles back and forth between convection and cond
tion.

In order to relate our work to other simulations of co
vection~both laboratory and astrophysical!, we first highlight
some of the stages that convection theory has gone thro

A. Assumptions in convection modeling

In the earliest analysis of convective instability by Ra
leigh @1#, the aim was to explain Benard’s@2# experimental
results for the onset of convection in a liquid. There are fi
assumptions that typically enter into analysis of Rayleig
Benard~RB! convection:~i! the Boussinesq approximatio
~i.e., the fluid is treated as incompressible except for sli
density fluctuations associated with thermal expansion, w
constant coefficienta!; ~ii ! the linear regime;~iii ! prescribed
boundary temperatures;~iv! the depth-independent kinemat
viscosity n and thermal diffusivityk5K/rCp ~whereK is
thermal conductivity,r is density, andCp is specific heat!;
and~v! impenetrable boundaries at well-defined spatial lo
tions, separated by vertical distancez. In the incompressible
551063-651X/97/55~3!/2769~11!/$10.00
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case,k5const ~equivalent toK5const! leads to the result
that the temperature gradientudT/dzu[b0 in thermal equi-
librium is depth independent.~The subscript 0 denotes pa
rameters in the equilibrium state.! In terms of the paramete
Ra5gab0z

4/kn ~whereg is the acceleration due to gravity!,
Rayleigh@1# showed that convection occurs only if the dri
ing is sufficiently strong, i.e., only if Ra exceed
Racrit527p4/4'660. In the next five paragraphs we summ
rize some of the salient changes that emerge when we r
each of the five assumptions of RB convection,~i!–~v!
above.

Relaxing the assumption of incompressibility, Spiegel@3#
estimated Racrit for a perfect gas~where pressurep is given
by p5RrT andR is the gas constant!. In this case, in the
limit of constant conductivity, the equilibrium state still ha
b05const, but the density and pressure profiles in the eq
librium state are no longer linear functions ofz: instead the
condition of hydrostatic equilibrium requires that the dep
dependences ber0;zm and p0;zm11, where the ‘‘poly-
tropic index’’m is not arbitrary but depends on the tempe
ture gradientb0 according tom5g/Rb021. @We shall use
this relation in dimensionless form below~Sec. II B!.# When
the material is compressible, it is no longer the absol
value of the temperature gradientub0u that is relevant in es-
timating the strength of convective driving: instead, the r
evant quantity in the expression for Ra is now the supera
baticity, i.e., the excess ofub0u over the adiabatic gradien
ubadu5g/Cp @4#. Now, for a perfect nonionizing gas
Cp52.5R: in the dimensionless units that we use below
our equations,R51, and this leads to (dT/dz)ad5g/2.5.
With the above definition ofm, this means that a configura
tion with m. ~,! 1.5 is stable~unstable! to convection in
the dissipationless limit. When one evaluates Racrit in the
compressible case, one finds that in the limit where the te
peratures at the bottom and top are almost equalTb/Tt→1
~i.e., nearly incompressible!, Racrit approaches the incom
pressible value~;600!; but for largeTb/Tt , Racrit in a per-
fect gas is greatly reduced, to values as small as;53 for
Tb/Tt511 @5#.
2769 © 1997 The American Physical Society
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Relaxing the linear assumption of RB convection, labo
tory studies@6# have shown that nonlinear convective flow
can achieve a steady state provided that the driving is not
strong~Ra/Racrit<10–20!. In the limit of strong driving, the
flows become turbulent@6#. In the case of compressible con
vection, the nonlinear regime exhibits subsonic flows wh
the driving is not too strong, shocks may form in strong
driven flows @7#, and convective cells have vertical exten
comparable to the local scale height@8,9#. In the present
paper, we are interested in time-dependent behavior of a
clic nature: since turbulence might mask the time behav
we are studying, we choose cases where the driving is no
strong as to lead to turbulence.

Relaxing the RB assumption of prescribed temperatu
on the boundaries, astrophysical convection is typica
simulatednot by specifying thetemperatureon both bound-
aries, but by specifying theheat flux inputon the bottom
boundary and the temperature at the top@10#. This set of
boundary conditions is very different from that which is typ
cally used in laboratory conditions: in the laboratory, w
fixed temperatures at top and bottom, there are no constr
on the heat flux. As a result, the heat flux that is carried
conductionFcond may be small compared to the flux that
eventually transported by convectionFC . The Nusselt num-
ber Nu5FC/Fcondmay therefore be large in such condition
In contrast to this, if we apply the boundary condition tha
certain flux is inputted at the bottom boundary, then
achieve thermal equilibrium in the initial configuration, th
thermal conductivity cannot be arbitrarily small: as a res
even when convection is fully developed, Nu remains v
modest: Nu<2.5/~m11! @17#. For example, in a case wher
m51, the maximum value of Nu is found to be no more th
1.25 @11#.

Relaxing the RB assumption regarding depth indep
dence, the diffusivities can be given significant depth dep
dences. In such cases, the evaluation of criteria for the o
of convection requires numerical integration@12#. The values
of Racrit in some cases are several orders of magnit
smaller than Rayleigh’s original number.

Finally, in an attempt to allow for the fact that astrophy
cal convection includes no material boundaries, the RB
sumption concerning impenetrable boundaries can be rela
by placing layers of stable compressible gas above and
low the unstable layer@13#. For brevity, we refer to this
configuration as a ‘‘sandwich.’’ A schematic illustration of
sandwich can be seen by referring to Fig. 4 below, altho
Fig. 4 as such is not strictly applicable to the sandwich ca
The relevant point here is that we are looking at fluid in t
x-z plane, withz being vertical. The fluid is 6 units of lengt
deep and 2p units of length wide. At timet50, convectively
unstable fluid is confined to the region where arrows
plotted in Fig. 4. In the case that we refer to as the ‘‘on
layer configuration’’~see Sec. II C below!, the convectively
unstable fluid is bounded above and below by impenetra
walls. In the sandwich case, the impenetrable walls
moved toz50 and 6 and the ‘‘blank’’ areas above and belo
the ‘‘arrowed’’ region in Fig. 4 are occupied by stable gas
immediate contact with the unstable gas. The temperatu
fixed atT51 at the top and the heat flux is prescribed at
bottom. As time progresses, convective flows develop in
unstable gas and some of these overshoot into the stable
-
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above or below. The thicker the stable layers of the sandw
the smaller the flow speeds when overshooting plumes re
the computational boundaries: in this context the relev
thickness of the layers is measured in terms of the contra
density and/or pressure from top to bottom. In terms of d
sity scale heightHd5dz/d lnr or pressure scale heigh
Hp5dz/d lnp, the convectively unstable layer is effective
isolated from ~nonphysical! boundary effects if the stable
layers are several scale heights thick.

B. Astrophysical convection

Convection zones in solarlike stars are bounded ab
and below by layers of stable gas. Therefore, if we can
termine the properties of convection in a sandwich confi
ration, it may assist in interpreting certain features of ast
physical convection.

Several previous numerical simulations of compressi
convection in configurations where unstable gas is in con
with one or two stable layers have been reported@11,13–16#.
The principal emphasis in those investigations was to
dress the question: how does convection~specifically, over-
shooting! affect the adjacent stable gas?

The emphasis of our work is the inverse of that in Re
@11,13–16#. Here our aim is to address the following que
tion: how does the presence of adjacent stable gas a
convection in the unstable layer?

C. The focus of this paper

To achieve our aim, a key aspect of our work is a co
parison and contrast of two carefully controlled simulation
The first ~the one-layer case! contains an unstable layer o
compressible gas in contact with impenetrable boundar
The second contains the identical unstable layer as in the
case, except that now the layer is sandwiched between t
layers of stable compressible gas above and below.

In both cases, the same heat fluxes are inputted at
bottom boundary, the same temperatures are assigned
tially to the top boundary, the same depth dependences
assigned to the diffusivities, and the same driving streng
Ra/Racrit are assigned to the initial states. By choosing co
ditions in this way, our aim is to isolate and identify tho
effects that are due to the presence or absence of im
etrable boundaries.

The equations and methods we use in our simulations
outlined in Sec. II. We present our results in Sec. III and
discussion is in Sec. IV. We conclude in Sec. V.

II. EQUATIONS AND METHODS

The conservation equations of mass, momentum, and
ergy can be expressed in the nondimensional fo
@8,9,12,17#
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S pr D G . ~3!

The equation of state is that of a perfect gas: in nondim
sional units, this is given by

p5rT. ~4!

In Eqs.~1!–~3!, t is the time andxj ,v j are the components o
direction and velocity vector, respectively, withz vertically
upward.g is the~constant! vertically downward gravity.g is
the ratio of specific heats: we take it to be constant and e
to 5

3 in this work.si j is the viscous stress tensor.
In Eqs.~1!–~3!, T, p, andr are expressed in units of the

respective values at the top of our computational domain,Tt ,
pt , andrt . The velocities are scaled in units of the adiaba
sound speed at the topct5(gpt/r t)

1/2. Our unit of lengthL0
is defined to be such that the width of the horizontal dom
is equal to 2pL0 and the depth of the domain iszmaxL0. For
all runs reported here, we choosezmax56. Time is measured
in sound-crossing unitsL0/ct at the top of the domain. In
these units, gravitygi is expressed in units ofc t

2/L0 ; si j is in
units of m tct/L0 , wheremt is the dynamic viscosity at the
top. ConductivityK is in units of the conductivity at the top
Kt .

When fluid equations are integrated, the level of dissi
tion in any particular run is prescribed by assigning nume
cal values to any two among a set of four dimensionl
numbers: the Rayleigh number, the Prandtl number, the R
nolds number, and the Pe´clet number. In material that is
incompressible, one frequently has at least an order of m
nitude estimate of the mean flow speedUm : it is typically the
speed that is imposed on the flow. Moreover, one also
some knowledge of the length scaleL over which flow vari-
ables change appreciably: this allows one to define a R
nolds number or a Pe´clet number in terms ofUm , e.g.,
Re5UmL/n and Pe5UmL/k. However, when we deal with
thermal convection, the mean flow speed is unknown
cannot be assigned a value beforehand: the flow speed is
of the solution that we must obtain by integrating the eq
tions. Therefore, we are forced to define Re and Pe in te
of a speed other than the flow speed: since we are dea
with compressible material, the natural unit of speed in
problem is the sound speed. As a result, we choose the
lowing definitions for the two dimensionless parameters t
control the amount of dissipation in our compressible flow

Re5
r tL0ct

m t
, ~5!

Pe5
r tL0ctCp

Kt
. ~6!

Note that Re/ct;1/n t , wherent is the kinematic viscosity a
the top, and Pe/ct;1/k t , wherekt is the thermal diffusivity
at the top. Thus the product of our two dissipation numb
Re3Pe/c t

2 scales as 1/k tn t : this combination of parameter
appears in the original definition of the Rayleigh number
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~see Sec. I A above!, indicating that once the dissipation pa
rameters Re and Pe are chosen, Ra is no longer an inde
dent parameter. The product Re3Pe will also appear below
when we define a ‘‘dynamic’’ Rayleigh number to characte
ize our flows@see Eq.~8! below#. We solve the equations a
an initial boundary value problem on a two-dimensional g
of sizeNx3Nz .

A. Boundary conditions

In the horizontal directions, the boundary conditions a
periodic. In the one-layer case, unstable gas is in contact
impenetrable stress-free walls at top and bottom. On the
wall the temperature is specified and on the bottom wall
heat flux is specified.

In the sandwich case, a convectively unstable layer w
identical thermal and mechanical properties to those in
one-layer configuration is placed with a stable layer on
~severalHp thick! and a stable layer underneath@~1–2!Hp
thick#. Ideally, the thicker the stable layers, the more isola
the unstable layer from boundary effects: the values
choose here are a computational compromise, and we s
see below~Sec. IV E! that as long as the stable layers a
thicker than about 0.7Hp , this suffices to isolate the convec
tive flows from boundary effects. The top and bottom boun
aries of the computational domain are stress-free imp
etrable walls with the same thermal boundary conditions
in the one-layer case.

B. Initial conditions: Sandwich convection

For the sandwich simulations, we wantudT/dzu in the
center of the domain to be steep enough so as to be con
tively unstable, while near the top and bottom,udT/dzu
should be shallow enough to ensure convective stability
the interest of eliminating numerical artifacts from the so
tions as much as possible, we avoid the use of piecew
continuous expressions: we prefer to use an analytic func
for the temperature profile. The expression that we chose
T(z) is

T~z!5T01a ln@~z2z0!1A~z2z0!
211#. ~7!

Herez0, the location of steepest gradient, is chosen near
center of the domain andT0 is given a value there. Oncez0
andT0 are given,a is assigned a~negative! value such that at
the topT→1. In the runs to be reported below, we cho
z053.4 andT053.6. With these choices,a521.544. The
bottom temperature in this case isTb56.6. The temperature
profile T(z) with this choice of parameters is shown by th
solid curve in Fig. 1. The profile of the adiabatic gradientTad
is shown in Fig. 1 by the dashed line: the slope of this line
26/5, corresponding to our choice ofg523.0 ~see below!.
Compressible material is convectively stable~unstable! in
regions where the slope of the solid line in Fig. 1 is stee
than the slope of the dashed line, i.e.,udT/dzu, (.)
udT/dzuad. Visual inspection of Fig. 1 shows that the slope
the solid curve is shallower than adiabatic near the bott
~z50! and also near the top~z56!, while at intermediate
depths, there is a portion of the solid curve that has a ste
slope than the dashed curve.
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To make this visual impression more quantitative,
note that, once the temperature profile is chosen, the d
dependence of the polytropic indexm follows from the pre-
scription given in Sec. I A above:m5(g/[dT/dz])21
~whereg is a negative number in our notation!. Given the
temperature profileT(z), the initial pressure profile is com
puted by integrating the hydrostatic relationdp/dz5rg
downward from the top~wherept51 andrt51! using the
equation of state~4!. The absolute value ofg and the profile
of m combine to determine the pressure contrast across
domain. In the runs reported below, withg523.0, the pres-
sure contrast is 492. In this case, the polytropic indexm has
the value 4.4 at the top, 5.9 at the bottom, and has a m
mum of 0.943 near the middle of the unstable layer. As w
mentioned above,m,1.5 suffices for convective instability
in the material we consider~a perfect, nonionizing gas!.
Once a value is assigned tog, the adiabatic temperature gra
dient (dT/dz)adiab is obtained from (dT/dz)adiab5g/2.5: this
is the equation for the dashed line in Fig. 1~with T51 at the
top!.

The plot of temperature profiles in Fig. 1 is not the on
way to illustrate where stability and instability occur. A
alternative approach is provided by considering the entr
S;ln~p/rg!. In an adiabatic process,S5const. Therefore, a
locations wheredS/dz,0 ~.0!, the material is convectively
unstable~stable!. In Fig. 2, open triangles joined by a dash
line indicate the vertical gradient of entropydS/dz ~horizon-
tally averaged! in the initial configuration.~The continuous
lines will be discussed below.! Note that the values ofdS/dz
are positive near the top and near the bottom, indicating
the fluid there is convectively stable. However,dS/dz is
negative~i.e., the fluid is convectively unstable! at interme-
diate depths~Fig. 2!. Note that the dashed profile in Fig. 2
in hydrostatic equilibrium. The thermal conductivity is give
a z-dependent value such that the conductive heat flux
constant at all depths.

Across the upper stable region~z'4.2–6!, the pressure
varies by a factor of 30–40. Thus, in terms of local press
scale heightHp , the upper stable layer is;4Hp thick. The

FIG. 1. Solid curve, dimensionless temperature profileT(z) in
the initial configuration; dashed line, adiabatic temperature pro
th
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unstable region extends fromzUB'2.6 to zUT'4.2, corre-
sponding to the horizontal bar near the lower boundary
Fig. 2: the extent of this bar is 1–2 times the localHp . The
thickness of the lower stable region~z'0–2.6! also corre-
sponds to 1–2 times the localHp .

C. Initial conditions: One-layer configuration

In the one-layer configuration, we choose only the port
of the above temperature profile that is unstable, i.e.,
consider only the fluid that lies betweenzUB and zUT and
place an impenetrable wall at each of these depths. In
case,Nx3Nz564334. At heights betweenzUB andzUT the
initial temperature profile and the initial entropy profile a
chosen to be identical to the profiles that we use in the sa
wich case. The inset in Fig. 2 illustratesdS/dz for the one-
layer case: the horizontal positioning of the inset is such t
the range ofz values in the inset is aligned with the range
z values that are unstable in the sandwich case~see the hori-
zontal bar near the bottom of Fig. 2!. The dashed line with
triangles in the inset is the initial profile ofdS/dz and is
identical to the corresponding portion of the dashed line
the main part of Fig. 2. In the inset, the initialdS/dz is
entirely negative, i.e., convective instability extends throug
out the domain and convective flows come in contact w
impenetrable walls at top and bottom. This corresponds
one-layer configuration similar to the ones that have b
studied in the literature@5,8#.

III. RESULTS

To initiate flows we impose a small vertical velocity i
the domain. The equations are then integrated in time

.
FIG. 2. Dashed line and open triangles, dimensionless entr

gradientdS/dz as a function of vertical coordinate in the initia
sandwich model. Stable layersdS/dz.0 exist at the top and bot
tom: an unstable layerdS/dz,0 lies between the two stable layer
Solid lines, profiles ofdS/dz when the flows are in the nonlinea
regime; inset, profiles ofdS/dz in simulation of one-layer convec
tion; dashed line, initial profile; solid line, profile in nonlinear re
gime.
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many hundreds of sound crossing times. In the one-la
configuration, convection rolls develop~see Fig. 4!, and
these become steady in time. In the sandwich case, the
vective flows that develop are time dependent and overs
into the overlying and underlying stable fluids. In order
describe our results, it is helpful first to introduce a para
eter that essentially extends the concept of the Rayle
number~well known in linear stability theory! into the non-
linear regime.

A. Dynamic Rayleigh number

Ever since Rayleigh’s@1# work, it has been traditional to
characterize the convective stability properties of a conta
of depth d in terms of the Rayleigh numbe
Ra5g(1/kn)d4ubua: the ordering of the terms in this expre
sion is chosen for ease of comparison with Eq.~8! below.
The above definition of Ra is a static one and Ra is evalua
at a particular depth~so thata51/T can be specified! and at
a particular time~t50!. However, in the present case, a sta
definition is of limited value: neither the depth of the co
vective layer nor the value ofb is fixed in time, nor isb
independent of depth at any time~even att50!. As a result,
there is no unique way to define ‘‘the’’ traditional Rayleig
number in the present case.

In the present work, in order to have a parameter t
describes the convective stability properties of the sandw
case, we choose to define an instantaneous ‘‘dynamic m
Rayleigh number’’ Rad at time t as

Rad~ t !5ugi uSRe3Pe

ct
2 Ddeff4 ~ t !K ub~ t !u

T~ t ! L
global

. ~8!

The analogy with the traditional definition of Ra is appare
the terms Re3Pe/c t

2 in Eq. ~8! corresponds to the terms 1/kn
in Ra @see the discussion following Eq.~6! above# and the
termsubua in Ra appear asubu/T inside the angular bracket
in Eq. ~8!. In the limit m5const anddT/dz5const, Rad as
defined in Eq.~8! reduces to the original definition by Ray
leigh @1# ~sincea51/T for a perfect gas!. The angular brack-
ets with the subscript global denote an instantaneous sp
average overall sites in the domain where the temperatu
gradient is superadiabatic at timet. Because Eq.~8! includes
information at all superadiabatic sites in the domain, the
rameter Rad allows us to characterize the convective stabil
properties of the domain in aglobalmanner. In particular, it
is important to note that we arenot restricting our consider-
ations to a single horizontal plane, but ratherwe are averag-
ing over every point in the domain where the temperat
gradient is instantaneously superadiabatic. The quantity
deff(t) represents a crude attempt to characterize the ins
taneous depth of unstable fluid: it is obtained by evaluat
the instantaneousb(t) at each site in the grid~using second-
order centered finite differences!, counting the number o
sitesNp at which the temperature gradient is superadiaba
and then definingdeff as d3Np/(Nx3Nz), whered is the
depth of the computational domain. In our runs,deff turns out
to have values that are close to the original choice for
depth of the unstable layer: in units ofL0, deff turns out to
have values of about 1.3~see Fig. 2!. The global average tha
we use in obtaining a numerical value for Rad means that
er
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pointwise information is smoothed out in Rad ; however,
there are no drastic differences in the behavior of the co
vection over anx-y plane. As a result, the unstable laye
with deff'~1.3–1.4!L0 in the nonlinear phases occupies 20
25 % of the computational domain. We recognize that
more formal definition might be useful, but in the presen
study, the above definition of Rad serves our purposes ad-
equately.

B. One-layer configuration

The one-layer simulation was started from initial cond
tions such that Rad(t50)/Racrit'44. @The value of Racrit for
the prescribedT(z) was determined numerically using the
same time-dependent approach that we used in our previ
work @12,17#.# The time history of Rad is shown as a solid
line in Fig. 3: the initial relatively large value is maintained
up to times of some 30–40 sound crossing times. Then,
convective flows begin to enter a nonlinear regime where t
maximum velocities grow rapidly. To quantify the convec
tive heat flux, we considera globally averaged quantity

FC~ t !5

E
zUB

zUT
^rvzDT&hordz

zUT2zUB
. ~9!

In the integrand,vz is the instantaneous vertical velocity and
DT is the difference between the instantaneous temperat
at time t and the initial temperature at the same locatio
Angular brackets with the subscript hor indicate averag
over a horizontal plane at timet. Integration overz allows us
to average over the unstable zone in the vertical direction.
taking the global average in Eq.~9! over all heights between
the bottom of the unstable layerzUB and the top of the un-
stable layerzUT , we are allowing for the fact that, at differen
instants in time, the convective flux may peak at differe
horizontal levels within the convection zone. The time de
pendence ofFC is shown by the dashed curve in Fig. 3

FIG. 3. One-layer convection: time histories of dynamic Ray
leigh number Rad @defined in Eq.~8!# ~solid line! and dimensionless
convective flux@defined in Eq.~9!# ~dashed line!. The units of time
are the sound crossing time.
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Although we could, in principle, expressFC in terms of a
Nusselt number, this is not especially relevant with t
present boundary conditions~see Sec. I A above.!

As the convective flows develop,FC enters a phase o
rapid growth~in the time intervalt540–60: see the dashe
curve in Fig. 3!. During the time interval whenFC is rising
to its maximum, it is obvious from Fig. 3 that there is
precipitous drop in the value of Rad . After a couple of small
oscillations, the system adjusts to what is clearly a ste
state: for times in excess oft'100, both Rad andFC in Fig.
3 remain invariant. The value of Rad in this steady state is
smaller than the initial value by a factor of more than 10:
flows have caused the mean temperature gradient to
proach closer to marginal stability by an order of magnitu

When steady state is achieved, the entropy gradientdS/dz
has thez profile shown by the solid line in the inset in Fig.
The solid line shows thatdS/dz still remains negative from
z53.2 to 4.2: thus convective instability persists over t
range of depths. There is also a narrow region of depths f
z52.6 to 2.7, wheredS/dz is also still negative: this is the
lower boundary layer that remains convectively unstable.
the intermediate range of depths~z52.7–3.2!, dS/dz is posi-
tive. ~The presence of an extended region of positivedS/dz
in a convection zone with an impenetrable wall at the top
also been pointed out in@18#.! Fluid in this intermediate
region has become formally stable to convection beca
nonlinear interactions tend to drive the system toward sta
ity. However, flows that are being driven by the upper a
lower unstable boundary regions have enough instability
maintain fluid motions in the formally stable zone. To illu
trate this, the velocity vectors in a steady state are show
Fig. 4: the figure shows convection rolls extending from t
top to the bottom of the convective layer~in agreement with
the simulation results in@5,10#!. Maximum velocities in the
flow are 0.52 in our dimensionless units~i.e., Mach number
relative toct!.

Although it is not immediately apparent, there are actua
several profiles ofdS/dz plotted with solid lines in Fig. 2
~inset!: they are ‘‘snapshots’’ taken from various instants
time in a steady state. However, they are so similar to e

FIG. 4. Snapshot of velocity vectors in one-layer convection
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other that our graphics resolution cannot separate them.
is a good indication of the steadiness of the flow regime t
has been established.

We can summarize this subsection as follows: our sim
lations are consistent with empirical results that show t
when a convectively unstable fluid is in contact with impe
etrable boundaries, the convective flowscanachieve a steady
state provided that the driving is not too supercritical@6#.
Our simulations are also consistent with previous simulati
@5,8#.

C. Sandwich convection

In Fig. 5~a! we show time histories of Rad ~solid line! and
FC ~dashed line! in a simulation of sandwich convectio
with Re510 and Pe52. In Fig. 5~a! it is important to note
that we choose the strength of the convective driving to be
close as possible to that in the one-layer case, i.e., the in
Rayleigh number Rad(t50) in Fig. 5~a! is as close as we ca
make it~within the constraints set by the discreteness of
grid! to the Rad(t50) value in Fig. 3. Despite our carefu
choice of the same initial parameters in Figs. 3 and 5~a!, the
results for the sandwich configuration are qualitatively qu
different from the one-layer case: the initial stage of lar
~and constant! Rad persists for only;20 time units. Now,
the convective flux rises to its first maximum att'30, caus-
ing dT/dz→dT/dzadiabbecause of the nonlinear interaction
This corresponds to a precipitous drop in Rad . In this case,
there are no boundary regions to preventdT/dz from becom-
ing very close to, or even falling below~in absolute value!,
dT/dzadiab. The lack of such control has the effect that pa
of the initially unstable layerbecomes convectively stabl,
i.e., the unstable region becomes somewhat narrower. T
lustrate this narrowing of the unstable region, we plot t
profile of dS/dz at about a dozen instants in Fig. 2~solid
lines!. The separate profiles are slightly different from o
another, giving the impression of a broad black curve in
figure: close inspection, however, will reveal that there
many individual profiles superposed, and they cycle ba
and forth as time progresses.

Following the initial precipitous drop in Rad , the numeri-
cal values of Rad andFC both exhibit behavior that to the
eye appears rather cyclic, with a period of about 30–40
mensionless units.FC cycles back and forth between ‘‘high’
and ‘‘low’’ states. The fluctuations inFC in the course of the
cycle are by no means small:FC is some 2–3 times larger in
the high state than in the low state. The numerical value
Rad oscillate above and below a mean value of Radm'2. To
quantify the period of the oscillation, we computed pow
spectra~not shown! for the time profiles ofFC and Rad :
maximum power indeed occurs at the period of 33 in dim
sionless units, consistent with what the eye picks out in F
5~a!.

As regards the temporal behavior of the cycles in Rad and
FC in Fig. 5~a!, we draw the reader’s attention to a cle
phase relationship between the cycles. Inspection of Fig.~a!
indicates that there is a 90° phase shift between the
quantities: when Rad reaches an extremum,FC reaches an
extremum in its first time derivative and vice versa.

In the initial state, the unstable regions extended fr
zUB52.6 tozUT54.2 ~see the dashed profile in Fig. 2!. How-
ever, at later times,dS/dz is negative only over a more re
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FIG. 5. Sandwich convection: time histories of dynamic Ra
leigh number Rad ~solid line! and dimensionless convective flu
~dashed line!. ~a! Re510, Pe52; ~b! Re520, Pe52; ~c! Re55,
Pe54.
stricted range ofz ~Fig. 2!. The lower part of the initially
unstable layer has been eroded by the tendency towards
bility, and there is no compensating effect of a lower boun
ary layer: the unstable region now has a bottom boundar
zUB'2.9–3.0. To be sure, the upper regions of the initia
unstable layer have also encroached upon the overly
stable layer slightly~zUT'4.3!: but this is not as large an
effect as what has happened at the lower boundary.
overall effect is for the unstable layer to be now somew
thinner than initially. Moreover, the thickness of the unsta
layer oscillates about its new mean value.

In order to increase the strength of the driving, we
creased Re by a factor of 2 to Re520, but kept Pe52. Re-
sults are shown in Fig. 5~b!. Again, cyclic behavior is evi-
dent, with a period of about 35 units, almost the same as
in Fig. 5~a!. However, in Fig. 5~b!, the values of Rad oscil-
late above and below a mean value of Radm'4, which is
about twice as large as the corresponding number in
5~a!. Finally, in order to investigate the dependence on
Péclet number, we show a run for Pe54 in Fig. 5~c!: in this
run, we set Re55. Now the predominant period in the cyc
is about twice as long as before: the power spectra pea
periods of 60–62. Moreover, the values of Rad now oscillate
around a mean level Radm'1. We return to these result
below in our discussions of scalings~Sec. IV C!.

IV. DISCUSSION

The contrast between the one-layer case and the th
layer ~sandwich! case is striking: in the one-layer case, t
convection is steady, but in the sandwich case, it is cycli

A. Steady convection in a single layer

The temporal behavior in the one-layer simulation can
understood in a straightforward way. Initially,dT/dz is steep
enough so that conduction carries all of the flux that is
putted at the lower boundary. However, the temperature p
file is highly unstable and Rad is large. Because of the insta
bility, convection begins. On time scales of tens of sou
crossing times, there is a sharp increase in the heat flux tr
ported by convectionFC . As the convective flux increases
dT/dz throughoutmostof the fluid flattens, approaching th
marginally stable ~adiabatic! gradient dT/dzadiab. As
dT/dz→dT/dzadiab, ubu→0. The more flux convection car
ries, the less burden is on conduction and so the shallo
the temperature gradient can become. The value of Rad ~as
we have defined it! therefore drops: the rate of decline in Rad
is steepest whenFC is maximum. As Rad decreases, i.e., a
ubu decreases, the tendency for convection to be driven n
the center of the domain declines: as a result,FC falls off
from its maximum value. However, althoughmost of the
fluid is tending towards adiabatic conditions, this isnot true
of two key regions in the flow: the thermal boundary laye
at the top and bottom remain convectively unstable and t
continue to drive the convection throughout the interior
the convective domain. Because of the accessibility of th
unstable layers, the convective flows in the main body of
convection zone do not stop, but can continue to be driv
The steady-state nature of the flows is apparent in the
stages of Fig. 3.
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It is the essence of the one-layer case that the fl
throughout the domain has direct access to unstable bo
ary layers at the top and bottom. Scalings that have b
derived for turbulent RB convection in order to explain e
pirical results@19# depend explicitly on mixing of the mate
rial between the unstable boundary layers and the main b
of the fluid. These scalings are rather successful in reprod
ing the empirical results, where values of Ra as high as 114

have been achieved in Boussinesq conditions.

B. Cyclic convection in the sandwich

In the simulation of sandwich convection with equa
strong driving, asdT/dz→dT/dzadiab, the unstable layer is
unable to carry much convective flux.~Note that, because th
amount of dissipation in the runs is chosen to be fin
udT/dzu need not fall belowudT/dzuadiabfor convection to be
choked off.! As a result,FC declines, and the convectio
looks as if it may ‘‘shut down.’’ In this case, because of t
adjacent stable layers,the convection zone has essentially
contact with any unstable boundary layer fluid for drivin.
However, as less and less flux is carried by convection,
energy equation demands that conduction begin to c
more and more. Therefore,udT/dzu must increase to allow
conduction to transport most of the flux inserted into t
domain at the base. The increase inudT/dzu causes Rad to
increase again, the convective flux builds up, and the
mands on conduction become less severe. This sets
cycle.

No steady state is reached: each time convective
reaches a maximum value, Rad undergoes its most rapid rat
of decline, and every timeFC reaches a minimum, Rad ex-
periences its most rapid rate of increase. The conductive
convective fluxes behave as a sort of flip-flop oscillator
which no steady state exists.

C. Origin of the cyclic behavior

The ~pseudo!period of 30–40 units for the cycles in Fig
5~a! and 5~b! is controlled by a balance between the forc
that drive convection and the forces that drive thermal c
duction. The convective forces~which tend to make the tem
perature gradient adiabatic causing Rad to fall towards zero!
can be characterized by a time scaletadiab that is expected to
scale as 1/gc , where gc is the growth rate of the fastes
growing convective mode. The value ofgc is
controlled by the strength of the convective driving R
for the incompressible case, Rayleigh@1# found
gc<ub0uagd

2/~k1n! @see Eq.~49! in @1##. In the compress-
ible case,ub0u must be replaced by the superadiabatic exc
~the quantityubu in the definition of Rad! and a51/T: the
combinationubug/T occurs in our definition of Rad @Eq. ~8!#.
With an aspect ratio of order unity in our case, Rayleig
scaling for the growth rate becomes~in our dimensionless
units! tadiab>deff

2 ~@Re1Pe#/Rad!.
As regards conduction, the appropriate time scale

tcond'L2/k, where L is the dimension of the region ove
which the conductive heat transport must operate: in
case, with an unstable layer of vertical thickne
deff5~1.3–1.4!L0 and horizontal extent 6L0, typical values
of L might be in the range~2–3!L0. In terms of the Pe´clet
number@Eq. ~5!#, this meanstcond'Pe(L/L0)

2L0/ct . In our
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dimensionless units~where one unit of time equalsL0/ct!,
this leads totcond'Pe~L/L0!

2.
In the course of a cycle, convection first sets in beca

Rad is large and therefore the growth times for the conv
tive modes 1/gc are quite short. But as convection develop
the temperature gradient falls so close to adiabatic
Rad→0: when this happens, the convective growth tim
tadiab;1/gc>Rad

21 become very long. Eventually,tadiab be-
comes longer thantcond: at this point, energy transport be
comes dominated by conduction. As a result, the tempera
gradient begins to steepen in order to carry the flux tha
inserted at the lower boundary. The time scale for this ste
ening is tcond: with Pe52 @as in Figs. 5~a! and 5~b!# and
L/L0'2–3, tcond is predicted to be of order 10–20 in ou
units. This is about one-half of the cycle times in Fig. 5~a!
and is consistent with the rise times of the cycles.

As the temperature gradient steepens, Rad increases and
the convective time scales become shorter: when they
below tcond convection takes over the energy transport a
the cycle begins anew. The cycle occurs because Rad oscil-
lates above and below a mean asymptotic level Radm at
which the convective growth timetadiab>~Re1Pe!/Radm is
comparable totcond. To see that this is the case in Fig. 5~a!,
note that Radm'2: since Re510 and Pe52 in this case@see
the caption of Fig. 5~a!#, this means thattadiab>6deff

2 , and
sincedeff'1.4 ~in our units!, this leads totadiab>12. Indeed,
the time scales of declining portions of theFC cycles in Fig.
5~a! are of order 10–20 units of time. The shape of the cyc
in Fig. 5~a! is roughly symmetric in time, suggesting that th
flow conditions have adjusted in such a way thatconvective
and conductive time scales tend to be comparable during
course of the cycle.

This analysis suggests that it isconductioneffects that
control theperiodof the oscillation, whereas it isconvection
effects that control the limiting mean value of Rad . The
flows adjust themselves so that the dynamic Rayleigh nu
ber Rad has an asymptotic mean value Radm such that the
convectivegrowth time scale becomes comparable to
conductivetime scale.

To test that the scalings are as suggested here, we ref
Fig. 5~b!, where Pe is unchanged from Fig. 5~a!. If the cycle
time scale is controlled by the conduction time scale~as we
have suggested above!, then since the conduction time sca
depends on Pe but not on Re, we would expect to see
same period in Figs. 5~a! and 5~b!. This is consistent with
what we see. However, the increase in Re1Pe by a factor of
about 2~from 12 to 22! in going from Fig. 5~a! to Fig. 5~b!
suggests that, if we are to keep the convective time sc
;~Re1Pe!/Radm fixed at the same value as before, the a
ymptotic mean Radm about which the cycle will oscillate
should increase by a factor of about 2. In fact, it can be s
in Fig. 5~b! that at long times, Rad oscillates about a value o
about 4, i.e., indeed higher by a factor of about 2 than in F
5~a!. Finally, in a run with Pe54 and Re55 @Fig. 5~c!#, we
expect to see a thermal conduction period about twice
long as with Pe52: in fact, the predominant period in Fig
5~c! is 60–65, i.e., about twice as long as in Figs. 5~a! or
5~b!. In Fig. 5~c!, with Re1Pe now having a value of 9@i.e.,
close to its value in Fig. 5~a!#, a doubling of the convective
growth time in Fig. 5~c! relative to that in Fig. 5~a! can be
achieved by reducing Radm by a factor of about 2 in Fig. 5~c!



t
d

n
e

tin
in
ve

-
n
n

th
d
t s
e
tra
im
e
v
us
w
th

id
n
n
-

on
it
6

r
re
he

c-

n

ad
ne
e
ov
os

o
n
ss
te
.

ug-

olar
gu-
.

t
our
han
ing
in

-

-

data
ots,

ux

ion
un,
ore
es
and

al
otes

55 2777CYCLIC CONVECTION IN A ZONE BOUNDED BY . . .
compared to Fig. 5~a!. In fact, we see that Radm in Fig. 5~c!
settles down to values of about 1, i.e., a factor of abou
smaller than Radm in Fig. 5~a!. Thus the scalings we derive
above seem consistent with the numerical results.

D. Contrast with time dependence due to turbulence

The cyclic behavior that we describe here is only o
possible form of time dependence that may occur in conv
tive flows. For example, it is well known~e.g., @6,19#! that
time-dependent convection can be caused by set
Rad(t50) in excess of some value: in such cases, the driv
may be so strong that the flows become turbulent. Howe
in such cases, the temporal variations inFC and Rad ~if there
are any! would probably be controlled by turbulent pro
cesses: because of the nature of turbulence, we might
expect to see a clearly defined phase relationship betweeFC
and Rad in strongly forced convection.

In the present paper, we have explored a mechanism
causes convection to become time dependent for quite
ferent reasons: we have chosen the driving to be no
strong that turbulence occurs. In fact, we have been car
to choose driving of such a strength that we can demons
that the convective flows are steady in the case where
penetrable boundaries are in direct contact with the conv
tion: then, with exactly the same amount of driving, we ha
found cyclic behavior in the sandwich configuration. Th
the time dependence we describe here has nothing to do
that which appears in a turbulent flow. In the cyclic case,
flows exhibit a definite phase relationship betweenFC and
Rad . The existence of this phase relationship might prov
us with a means to determine whether the time depende
in a particular convective flow is due to boundary conditio
~as in the cases reported here! or to a high degree of super
criticality.

E. Penetrative convection

In our simulations, we see the effects of penetrative c
vection in the lower stable layer: a snapshot of the veloc
vectors for the sandwich configuration is shown in Fig.
We see downward plumes extending as much as 0.7Hp into
the stable layer: there are alsog modes in the stable laye
with frequencies comparable to the local Brunt-Vaisala f
quencynBF5Agab, which are excited by these plumes. T
fact that our simulations containg modes in the stable fluid
is in agreement with previous simulations@10#. The presence
of oscillations atnBF in a stable fluid adjacent to a conve
tively unstable fluid has also recently been reported in
laboratory experiment@20# where convection is driven in a
unusual mode~using horizontal temperature differences!.

The length of the overshooting plumes allows us to
dress the following question: does the transition from o
layer to sandwich convection occur for arbitrarily thin upp
and lower stable layers or is there a critical thickness ab
which these heat flux cycles set in? If we were to cho
stable layers that were thinner than 0.7Hp , then some~or all!
of the overshooting plumes would ‘‘sense’’ the presence
the impenetrable boundary at the edge of our computatio
domain. In such cases, the convection would have acce
the same boundary layers that play such a key role in de
mining the properties of convection in the one-layer case
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is our contention in this paper that it is precisely thelack of
access to convectively unstable boundary layersthat allows
the convection to enter the cyclic regime. Therefore, we s
gest that as long as the stable layers are thicker than 0.7Hp ,
cyclic convection becomes possible.

F. Applicability to convection in the sun

We suggest that our results may be applicable to s
convection, where convection occurs in a sandwich confi
ration, with convectively stable material above and below

1. Fluctuations in solar flux

Let us consider our result thatFC exhibits large fluctua-
tions ~of order unity! in the course of a cycle. It is importan
to note that the computational domain that we used for
simulations is not large enough to accommodate more t
1–2 convective cells. If a larger domain were used, includ
N cells, we expect that the amplitude of the fluctuations
FC would be reduced by factors of orderAN. If we could
run a domain withN5106 cells @i.e., the number of convec
tion cells~granules! on the surface of the sun#, we expect that
the fractional fluctuations inFC would be reduced below
what we find@O~1!# toO~1023!. The flux of energy from the
sun~FS'1367 W m22! is known to exhibit temporal fluctua
tions with amplitudes up to 1–2 W m22 @21#. The largest
negative excursions can be ascribed to sunspots, but the
also contain fluctuations that cannot be ascribed to sunsp
and these can also be of order 1023 of the mean value. We
note the coincidence with our estimates of convective fl
amplitude.

2. Time scales of solar variations

We have argued that the time scale for cyclic convect
is controlled essentially by conductive processes. In the s
conduction is dominated by radiative effects. When theref
we raise the following question: on what time scale do
convection in the sun cycle back and forth between high

FIG. 6. Snapshot of velocity vectors in the two-dimension
sandwich. The vertical black bar along the right-hand side den
the initial location of the unstable convection zone.
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FIG. 7. Solid line: conduction~radiation! time scale in a solar model as a function of depth@21#; dotted line, acoustic flux emitted by
convection~arbitrary units!.
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low states? The answer will be ‘‘the radiative time scal
trad. For a parcel of material of diameterL and opacityx
~cm21!, the value oftrad is given by@22#

t rad5t thin@12xL cot21~xL !#21, ~10!

where

t thin5rCv/16xsT3. ~11!

Heres is the Stefan-Boltzmann constant andCv is the spe-
cific heat at constant volume. Since convective cell sizes
compressible medium have dimensions comparable toHp
@8,9#, it seems appropriate to setL5Hp. We evaluate the
above expression in a model of the solar convection z
@23# and present the results in Fig. 7. The solid curve sho
trad ~which, for purposes of comparison with the above d
cussion, we refer to astcond! as a function of depth beneat
the level whereT55800 K. The radiative time scale tend
towards small values near the surface and at great depth
intermediate depths~d'100 km!, tcond reaches a maximum
value of 300–400 sec in this model. According to our int
pretation of cyclic behavior, this means that convection
the sun at depths of order 100 km is cycling back and fo
between high and low states on time scales of 300–400

To see the significance of this in the solar context,
dotted curve in Fig. 7 indicates the depth dependence of
flux of acoustic powerFac ~in arbitrary units!, which is cre-
ated by quadrupole terms in the convective Reynolds stre
@24#: Fac;rM3v5, wherev is the convective speed andM is
the Mach number. Note that the acoustic flux is shar
peaked at depths of order 100 km and the magnitude of
’
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flux is extremely sensitive to variations in the convecti
flows: the results in Fig. 7 refer to the mean values in
solar model@23#. In view of the great sensitivity of acousti
emission tov, we suggest that since the convective flux
depths of about 100 km is cycling back and forth on perio
of 300–400 sec, this should contribute to significant perio
icity in solar acoustic power on periods of the same order
fact, it has long been known that acoustic modes in the
are readily detectable at periods around 5 min: the energy
mode peaks at a frequency of about 3 mHz, with a full wid
at half maximum of 2.8–3.5 mHz@25#, i.e., the acoustic
emission peaks at periods of 290–360 sec. The overlap
tween this range and the cycling time that we have found
solar convection suggests that perturbations in the convec
flux may be a significant excitation mechanism for so
acoustic modes.

V. CONCLUSION

We have performed two-dimensional simulations of co
pressible convection in an unstable layer that is sandwic
between stable layers. In a carefully controlled comparis
we have also simulated compressible convection in a sin
unstable layer in contact with impenetrable walls.

We find ~in agreement with previous work! that convec-
tive flows in the single-layer case can reach a steady s
when the layer is driven moderately supercritical. Howev
in contrast to this, we find that when the sandwich case
driven with identical strength, the convective flows donot
reach steady state: instead, they are cyclic. The essentia
tinction between the single-layer case and the sandwich
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is the following: in the single-layer case, convectively u
stable fluidis in direct contact with unstable boundary lay
ers, whereas in the sandwich case,there are no such unstabl
boundary layers.

The cyclic fluctuations in the convective heat fluxFC in
sandwich convection are not small:FC varies by factors of
2–3 between minima and maxima. In the cycles, there is a
clear 90° phase shift betweenFC and the dynamic Rayleigh
number Rad .

We argue that the time scale for the cycles is control
by conductive processes~essentially the Pe´clet number!. We
also argue that the value of Rad cycles above and below
limiting mean value Radm , which has the following property
n
b

N.

. J

. J
-

d

the convective growth time scale in fluid that is being driv
with strength Radm is comparable to the conductive tim
scale.
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